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An efficient scheme for the description of long-mean-free-path particle transport at a kinetic level has been
extended to a case where particle distributions are highly anisotropic: implantation of ions into a solid. The
method calculates the scattering rate of particles throughout a region and obtains the particle distribution from
the scattering rate. The scattering rate is found by using a numerical form of a propagator to solve an integral
equation. The propagator is the probability that a particle that scattered in a cell has its next scatter in any other
cell of the mesh. The main focus of this work is the way this propagator can be computed efficiently and
accurately for an arbitrary angular distribution of scattered particles as compared to other computer models.
The method is illustrated in application to implantation of dopants into silicon.@S1063-651X~96!08507-8#

PACS number~s!: 02.70.2c, 05.20.Dd, 68.55.Ln

I. INTRODUCTION

In this paper we describe an efficient, nonstatistical nu-
merical technique for calculation of particle distribution
functions. The method is applicable for an arbitrarily varying
mean free path in situations where individual particle motion
between collisions does not involve nonlinear interactions
between the particles themselves. The present work extends
an earlier method to the case where the particle distribution
function is highly anisotropic. The method used here to find
the depth profile of the implanted ions from the ion distribu-
tion at the surface is referred to as a ‘‘transition-matrix’’
~TM! technique. The techniques presented allow detailed,
spatially resolved predictions of the dopant profile to be ob-
tained, efficiently enough to be used to optimize the implan-
tation system design.

The implantation of energetic ions into a solid has in the
past been described by Monte Carlo@1–3# or Fokker-
Planck–Boltzmann@4,5# calculations of the ion trajectories
in the solid. In this paper we employ a nonstatistical
transition-matrix@6–8# description of the ion motion that is
much more efficient than Monte Carlo methods in multiple
dimensions where statistical fluctuations in peripheral areas
~i.e., low-dopant-concentration regions! can be a severe
problem @3#. While the TM method can be considered an
extension to conventional Fokker-Planck–Boltzmann meth-
ods, it is more accurate in multiple dimensions. The method
involves numerically solving an integral equation for the
scattering rate of particles and for the angular distribution of
scattered particles. The key to the method is to be able to set
up a numerical ‘‘propagator’’~or kernel!, which we call the
transition-matrix, which is compact, accurate, and can be
used efficiently. The input to the calculation in the solid is
the ion velocity distribution at all points along the surface.

The TM description of the ion motion in the solid is out-
lined in Sec. II. In Sec. III we describe the setting up of the
TM in more detail. The results of calculations are then given
in Sec. IV for a set of implantation conditions, where calcu-
lated doping profiles and spatial distributions are presented.

II. TRANSITION-MATRIX DESCRIPTION
OF PARTICLE MOTION

In this section we describe the numerical scheme used in
this work. The procedure is fully kinetic and is equivalent to
solving the Boltzmann equation in terms of the information it
provides. However, instead of calculating the distribution
function directly as in Ref.@4#, we find in each phase-space
cell the scattering rate or, more precisely, the distribution of
particles that scattered in that cell of the numerical mesh.
The total distribution in the cell consists of particles that
scattered there and particles passing through the cell that
scattered elsewhere. Once the distribution of scattered par-
ticles is known, the total distribution can easily be found
from it. There are two advantages to finding the distribution
of scattered particles first.

~i! The scheme updates the distribution iteratively by cal-
culating successive scattering rates in all the cells of the
mesh.~The procedure described in this version of the TM
method does not follow the time dependence in detail, there-
fore.! Each iteration takes the distribution of scattered par-
ticles from each cell and advances it to the next cells where
scattering occurs, for all the particles. The procedure em-
ploys very large steps since each ‘‘step’’ corresponds to the
motion between successive collisions. This is very efficient
and reduces the numerical diffusion by minimizing the num-
ber of times the particle scattering rate is replaced on the
mesh.

~ii ! If ~as is often the case! the angular distribution of
scattered particles in each cell can be stored using a simpler
representation than can the full distribution function of all
the particles in the cell, the storage requirements are reduced
by a very large factor.

In this TM method we calculate the number of particles
scattering and their angular distribution in each phase space
cell of the mesh. The phase space considered here includes
the three spatial dimensions and the kinetic energy of the ion
as a fourth variable. We first describe the physical processes
of ion implantation and then how the TM describes it nu-
merically.

The physical process of ion implantation can be under-
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stood as a series of individual events. First an ion travels
some distance in space~which we call a ‘‘ballistic’’ move-
ment! before undergoing a nuclear collision with an atom in
the solid. Both the direction and the distance the ion travels
depend on the initial velocity. On average the ion will travel
a mean free pathl, which depends on its initial velocity.
Once the ion suffers a nuclear collision, its velocity changes
in both direction and magnitude. Eventually, after numerous
‘‘generations’’ of ballistic moves followed by nuclear colli-
sions, the ion’s kinetic energy is lost and the ion comes to
rest somewhere inside the solid.

In the TM method the above physical picture is imple-
mented on a numerical mesh. The first part of this mesh is a
Cartesian mesh in three dimensions, which divides the solid
into small volumes. Each volume cell, denoted byc8, con-
tains another mesh. This mesh is a discretization of the ion’s
kinetic energyE8. Each cell of this mesh has an average
energyE8 and widthdE8 associated with it. For each spatial
cell c8 and for eachE8 the scattering rate of ions is com-
puted. Furthermore, an average velocityVW dr(c8,E8) of the
ions is also computed~see below!.

We will now outline how the scattering ratesR(c8,E8)
are iterated on the mesh. Let us consider a spatial cellc8 and
a group of ions at energyE8. This group of ions scatters at a
rate R(c8,E8) and has an angular distribution
f (u,f,c8,E8). f (u,f,c8,E8) is the probability that an ion
with energyE8 that last scattered in cellc8 is moving in a
direction within the rangef to f1Df andu to u1Du ~the
method used to computef is described in Sec. III A!. u50 is
along the Cartesianz axis ~which is defined to be normal to
the target surface! andf is measured from the Cartesianx
axis.

For given f (u,f,c8,E8) we need to know the probability
that an ion will next scatter in cellc. The ballistic TM
Tbal(c;c8,E8, f ) is exactly this probability. The rate of ions
with energyE8 scattering in cellc having come fromc8 is
Tbal(c;c8,E8, f )R(c8,E8). The total scattering rate in cellc
is the sum over all spatial cells

R~c,E8!5(
c8

Tbal~c;c8,E8, f !R~c8,E8!. ~1!

One important feature of the way we construct the ballis-
tic TM, which is explained in Sec. III C, is that we only need
to store a three-dimensional array to obtainTbal.

The use of Eq.~1! is illustrated in Fig. 1. The scattering
rate in the cellc can be thought of as being produced by
particles scattering in all the cellsc8, some of which subse-
quently scatter inc. For example, suppose a certain cellc8
has a scattering rate ofR(c8,E8) and 1% of these particles
have their next scatter in cellc ~i.e., the probability of the
next scatter being inc is 0.01!. Then the contribution of the
scattering inc8 to the scattering inc is given by 0.01
R(c8,E8). When the contributions from all cellsc8 are com-
bined, as in Eq.~1!, we get the total scattering rate in cell
c.

Once the new scattering ratesR(c,E8) are found for each
spatial cell, the ion energies are adjusted due to nuclear col-
lisions. Another TM, the ‘‘collision’’ transition matrix
Tcol(E,E8), is the probability that an ion with energy
E86dE8/2 will have a final energyE6dE/2 after a nuclear

collision. We then have an expression for the scattering rate
after allowance for nuclear collisions:

R~c,E!5(
E8

Tcol~E,E8!R~c,E8! ~2!

for all spatial cellsc.
In earlier work@6–8# we definedR to be a scattering rate

per second. In this workR is the number scattering at each
generation, so at, say, the third iteration of Eqs.~1! and ~2!
we find the total number of scatters at the third generation of
scatters in a certain cell.

In this section we described the physical process of ion
implantation and how the TM method calculates scattering
rates. In the next section we will describe how the TMs are
generated and incorporate another physical process~elec-
tronic stopping! into the TM method.

III. GENERATION OF TRANSITION MATRICES

In this section we first describe how the the angular dis-
tribution f of ions is calculated and how the TMs are gener-
ated. Detailed descriptions for nuclear collisions, ballistic
motion, and electronic drag TMs are given. We finish this
section with a schematic of the TM algorithm. We stress that
the physical model presented here is a simplified approxima-
tion. More complicated kernels for each of the propagators
could be used. However, the main purpose of this paper is to
illustrate the method. Accordingly, such extensions will be
incorporated at a later time.

A. Calculation of the angular distribution

The problem of finding the angular distribution of a group
of ions that have the same energy in a spatial cellc can be
thought of as being in two parts. First we recognize that all
of the ions which scatter in the cell carry with them some
velocity. During the nuclear collision, each ion is scattered,
on average, through some angleQ(E,E8), which depends
on the initial and final energies. We can calculate the average
velocityVW dr(c8,E8) carried in by particles that scatter in the
cell c from all other cells with ions at energyE8 using

FIG. 1. Schematic showing the redistribution of particles suffer-
ing a scatter then traveling from cella to cellsb2e.
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VW dr~c,E8!5

(c8Tbal~c,c8,E8, f !R~c8,E8!@xŴcosfsinu1yŴsinfsinu1xŴcosu#A2E8

M1

R~c,E8!
, ~3!

whereM1 is the mass of the ion and (f,u) are the spherical angles subtended by a line from cellc8 to c. Once in cellc, the
ions suffer a nuclear collision.Tcol(E,E8) gives the probability of the final energy after the collision beingE6dE/2. For each
final energy, an average cosine of the angle scattered through can be found; the angle beingQ(E,E8) ~see below!. By a simple
average over the ensemble, one finds

VW dr~c,E!5

(E8Tcol~E,E8!R~c,E8!cos@Q~E,E8!#VW dr~c,E8!A E

E8

R~c,E!
. ~4!

FromVW dr(c,E) we can constructf (f,u,c,E). However, we
first construct the angular distribution in another set of coor-
dinatesg( ũ,c,E), where ũ50 points in the direction of
VW dr(c,E). We choose the functional form ofg( ũ,c,E) to be

g~ ũ,c,E!5
1

2 F11
3uVW dru

A2E/M1

cosũG ~5!

for 0<ũ<p if u3VW dr(c,E)u,A2E/M1, otherwise

g~ ũ,c,E!5
2

~12cosũ l !
2

@cosũ2cosũ l # ~6!

for 0<ũ<ũ l5arccos@3uVW dru/A2E/M122# and zero other-
wise. The above forms conserve probability and give the
correct velocityVW dr(c,E). Onceg is found, simple coordi-
nate rotations to obtainf (f,u,c,E) can be done@where
u (f)50 is along the Cartesianz (x) axis#.

B. Transition matrix for nuclear collisions

We now describe the physical model used in the construc-
tion of the transition matrices. We start with the straightfor-
ward collision matrixTcoll . We stress that the physical mod-
els used to construct the TMs in this and the next two
subsections are somewhat arbitrary and can easily be
changed to a more sophisticated physical description. The
purpose is to illuminate the procedure of the TM approach,
not necessarily the physical model used.

We choose a model described by Lindhardet al. @9# and
Firsov @10#, where the nuclear scattering cross section may
be written using the approximate one-parameter expression.
They first define reduced energy and length parameters

«5«1E5S M2

M11M2

a

Z1Z2e
2DE, ~7!

r5r1x5@Npa2g#x, ~8!

whereE is the initial ion energy,M2 is the target mass,Z1
(Z2) is the ion ~target! atomic number,e is the electron
charge, N is the number density of the target,
g54M1M2 /(M11M2)

2, a is the screening radius

a50.8853a0~Z1
2/31Z2

2/3!21/2, ~9!

anda0 is the Bohr radius. They introduce the parameter

t5
T

gE
«2, ~10!

whereT is the energy transferred from the ion to the target.
The nuclear scattering cross section may then be written us-
ing the approximate, one-parameter version

Nds~T!5
r1
g

dt

2t3/2
h~ t1/2!, ~11!

where the functionh is of the form

h~ t1/2!5l0t
1/22m@11~2l0t

12m!1#21/q, ~12!

with l052.54,m50.25, andq50.475@4# in the simulations
reported here.

For each group of ions with energyE86dE8/2, we need
the probability of a final energy after the atomic scatter:
Tcol(E,E8). The probability of an ion with initial energy
E8 scattering to a range of final energyE6dE/2 is propor-
tional to the cross section

Tcol~E,E8!}E
T0

T1
ds~T!, ~13!

whereT0,15E82(E6dE/2).
Unfortunately, asT0 approaches zero,Tcol goes to infin-

ity. This represents very-small-angle scattering. A lower
limit T0

min is imposed to avoid this problem. Since the energy
transferred is related to the scattering angleQ by

T5gE8sin2~Q/2!, ~14!

this is equivalent to resolving nuclear scattering angles above
a certain limit. Since the algorithm described here has a fixed
angular resolution, a typical angular cell width is used in the
above equation to find the minimum energy transferred.
Typical angular widths giveT/E8;2%.

For each initial energyE8, Eq. ~13! is integrated over
each valid final energy cellE6dE/2 to find each component
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of Tcol(E,E8). The ‘‘total’’ cross section for large-angle
nuclear scattering at energyE8 is then

S~E8![E
T0
min

gE8
ds~T!. ~15!

The constant of proportionality forTcol is then simply
1/S(E8). The small-angle nuclear scattering that we have
neglected is accounted for as a viscous drag which does not
change the ions direction, only their speed~see below!.

C. Transition matrix for the ballistic move

We now describe the ballistic propagator
Tbal(c,c8,E8, f ), which is the probability of an ion’s next
scatter being in cellc, given it last scattered in cell
E86dE8 and has an angular distributionf in c8. Tbal de-
pends not only on the spatial cells but on the energy of the
ions ~through the mean free pathl) and the angular distri-
bution in cell c8. However, we do not need to construct
Tbal explicitly, as we shall see.

First, f (f,u,c8,E8) gives the probability that ions with
energyE8 in cell c8 are moving in a beam bounded by the
spherical anglesf to f1df and u to u1du. Once we
know the number in the beam, we can take that number and
distribute it among the Cartesian cells overlapped by the
beam~Figs. 2 and 3!.

The energy dependence ofTbal stems from the mean free
path l(E8). For each beam corresponding to a range of
(f,u), we store a list of Cartesian cells whose volumes over-
lap with the beam. This list treatsc8 as being at the origin.
The l th member of the list is at„x( l ),y( l ),z( l )… relative to
the position ofc8. The number of ions placed in each of
these Cartesian cells is the number left in the beam multi-
plied byh( l ,f,u,E8), the fraction of which scatter, given by

h~ l ,f,u,E8!5
DAdr

l~E8!DVr 2
, ~16!

whereDA is the cross-sectional area of the part of the Car-
tesian cellc that is inside the beam starting atc8 defined by
f to f1df and u to u1du. DA is perpendicular to that
beam at constantr . The dependence ofDA andh on c and
c8 is only through the differences in their Cartesian coordi-
nates.dr is the mean distance traveled down the beam in
crossing the Cartesian cell,r is the total distance traveled
from the initial cellc8, l is the mean free path for the energy
E8, and DV is the solid angle of the beam, defined by
DV[sinududf. Although Eq.~16! gives a good estimate if
dr is small compared tol, a better estimate is

12expS 2DAdr

l~E8!DVr 2D . ~17!

The quantitya( l ,f,u)[DAdr/DVr 2 is an average over
the Cartesian cell and is obtained by dividing the beam and
the Cartesian cells into subbeams and subcells and summing
over these. This quantity can be stored and later divided by
l(E8). The last part ofTbal involves computingl(E).
l(E8) is given by

l~E8!5
1

NS~E8!
, ~18!

whereS(E8) was computed in constructingTcol and is given
by Eq. ~15!.

In summary, the set of quantitiesa( l ,f,u)
[DAdr/DVr 2 are all we need to store to findTbal. They
can be computed once and stored for a given spatial and
angular mesh. Even in three-dimensional space, this geo-
metrical part ofTbal can be stored compactly and can be used
for a variablel. This approach constrains us to think in
terms of traveling along beams outward from the initial cell.
We first decide on which ‘‘beam’’ to follow and then we
travel out along it. This restriction is acceptable since it al-
lows Tbal to be stored compactly.

D. Electronic stopping and small-angle nuclear scattering

Large-angle nuclear scattering is not the only way for an
ion to lose its kinetic energy. In addition, as the ion travels
through the target, the electron gas can produce a viscous

FIG. 2. Two-dimensional schematic showing ‘‘final’’ Cartesian
cells overlapped by the ‘‘beam’’ from a particular initial point.
Since the initial cell is not a point, the beam comes from a source of
finite extent so the overlap of the beam with any Cartesian cell is
obtained by integrating over all points in the initial cell.E is the
final kinetic energy remaining at that radius after having undergone
losses due to electronic stopping and small-angle nuclear scattering.

FIG. 3. Relationship between the spherical and Cartesian coor-
dinate systems used to set up the transition matrix.
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drag. We now describe how this TM,Tele, is constructed.
We then describe how small-angle nuclear scattering~which
can also be thought of as a viscous drag! is included with this
TM.

We start with expressions similar to those of Lindhard
et al. @9# and Firsov@10#. The expressions used to calculate
the energy loss due to electronic stopping of ions are

dEe5dLNSe ~19!

and

Se~E!5SL5kEq, ~20!

wheredL is the path length,Se is called the stopping power,
q51/2, andk is given by

k5
1.212Z1

7/6Z2
~Z1

2/31Z2
2/3!3/2M1

1/2. ~21!

The expression can be integrated to give the change of en-
ergyDE given that the ion traveled a distanceL.

Tele(c,c8,E,E8) gives the probability that, due to electron
drag, the ion will drop down to a ‘‘final’’ energyE in each
cell c it crosses given that it last scattered in cellc8, with
energyE8. Since we know the initial and ‘‘final’’ Cartesian
cells, we know the average length traveledl and therefore we
can find the ‘‘final’’ energy. By tabulating this we can use it
to findE andl(E) at all points along the ion’s trajectory, for
use with the ballistic transition matrix.

As described previously, small-angle nuclear scattering
can also be considered to be simply a viscous drag term. The
energy loss due to traveling a short distancedl is given by

dE5NdlE
0

T0
min

Tds~T!. ~22!

For each beam described inTbal, the above equation is nu-
merically integrated from each initial cell to each final Car-
tesian cell. We note that as the integration is carried out
along the trajectory, the energy of the ion is changing not
only due to small-angle nuclear scattering but also due to
electronic drag. These energy losses change the lower bound
of the integral. It is important to include this effect while one
is computing the energy loss due to small-angle nuclear scat-
tering. The corresponding energy loss is added to that which
is already included inTele.

E. Algorithmic flow of the TM approach

In the previous subsections we have described each TM
and the way each is constructed. We will now briefly outline
the algorithmic flow of the method.

Figure 4 gives the simulation flow chart. The code first
reads in the user defined input parameters, which define the
spatial and energy regions of interest. The program then
checks to see if the corresponding TMTbal has been com-
puted already for this set of input data. If not, control is
passed to a separate module that calculates the appropriate
T bal and stores it permanently. OnceTbal is found or calcu-
lated, the other TMs (Tcoll andTele) are computed according
to the spatial and energy meshes. While these TMs could
also be stored, there is not a large computational overhead in

calculating them in the beginning of the simulation.
The initial ‘‘pulse’’ of ions is allowed to enter the simu-

lation region, typically in a well-defined direction and en-
ergy. The TMTbal, in conjunction withTele, is used to find
the next cell in which the ion will have a large-angle scatter.
The TMTcol then describes, for each spatial and energy cell,
the distribution to final energy cells. In each spatial cell in
which there are ions, if there are ions in the initial energy
cell, the angular distributionf is computed and the process is
iterated again starting with the TMTbal. Otherwise the next
lower energy cell is iterated. Eventually, the last energy cell
will be emptied and the spatial distribution of the ions is
found from the density in the zero energy cell at all spatial
locations.

IV. RESULTS AND DISCUSSION

In this section we present results obtained from the TM
method. We have simulated a boron-ion beam incident onto
a silicon target. In all the simulations, the beam is tilted 7°
from the z axis ~which is defined to be the normal to the
surface of the target! and in thexz plane. The beam strikes
the surface atx5y5z50. The spatial mesh consists of 41
cells inz, 15 cells in bothx andy, 20 cells in each spherical
angleu andf, and 100 energy cells. The number of cells
was varied and this set was found to be both accurate and
efficient.

Figure 5 compares the TM results to experimental results
~as given in Ref.@4#! for a 100-keV boron-ion beam injected

FIG. 4. Flow chart illustrating the logic flow of the transition-
matrix method.
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into amorphous silicon. Figure 5~a! is obtained by summing
over x andy to obtain a depth profile of the boron-ion con-
centration. Both experimental and TM results are shown and
exhibit good agreement. Figures 5~b!–5~d! are contour plots
of the boron-ion concentration as a function of two spatial
variables, the third being summed over. In Figs. 5~c! and
5~d!, the peak in the ion concentration is not centered at the
x origin due to the small but nonzero incident angle of the
beam.

As the boron ions enter the silicon, the mean free path is
quite large so few ions suffer large energy losses initially. As
the ions move farther in, electronic drag and small-angle
nuclear scattering slow the ions until the mean free path de-
creases dramatically. Once this happens, the vast majority of
the ions suffer large-angle nuclear scatters~Fig. 5! and come
to rest near the peak of the depth profile.

Next, we vary the mass of injected ions. Figures 6 and 7
compare the computed and experimental depth profiles for
injected 160-keV phosphorus and 355-keV arsenic, respec-
tively. For the heavy ion arsenic, experimental results@11#
for electronic stopping suggest that Eq.~21! is inaccurate by
a factor of nearly 2. Accordingly, the stopping coefficient in
Eq. ~21! was multiplied by an estimated correction of 0.6 in
this case. Again, we see good agreement between the TM
and experimental results.

Finally, a 85-keV boron-ion beam is injected into a crys-
talline silicon target. In this case, thez axis ~normal of the

silicon surface! is also along the crystallinê111& axis. We
have included 13 planar and 26 axial channels for this cal-
culation. We have used the procedure described by Gibbons
and co-workers@4# for the critical angles, planar widths, and
final ion distribution in the channel. We do stress, as in Ref.
@4#, that when channeling is incorporated, it is important to
allow only ions that suffer large-angle nuclear scattering to

FIG. 6. Phosphorous-ion concentration for a 160-keV injected
beam into amorphous silicon as a function ofz: squares, experi-
ment; line, TM.

FIG. 5. Boron-ion concentration for a 100-keV injected beam into amorphous silicon.~a! Boron-ion concentration as a function ofz:
squares, experiment; line, TM.~b!–~d! Contour plots of the boron-ion concentration as a function of two spatial variables with the third being
integrated~summed! over. Contours are 0.003 16, 0.01, 0.0316, 0.1, 0.316, and 0.95 of the maximum value.
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channel; otherwise excessive channeling can occur due to the
finite size of the angular mesh.

Figure 8~a! shows the depth profile for the boron-ion con-
centration. Experimental results and results of an amorphous
calculation and a channeling calculation are shown. It is ob-

vious that channeled ions contribute to the tail of the concen-
tration after the peak in the depth profile. Figures 8~b!–8~d!
are the corresponding contour plots. The inclusion of chan-
nels allows the ions to penetrate further into the solid in
preferred directions.

The computational requirements of the TM method de-
pend strongly on the size of the mesh used and, to a lesser
extent, the amount of large-angle scattering. For the results
presented here, typical CPU time on a dedicated Hewlett-
Packard 715/80 workstation is about 1 h~half of that if the
symmetries of the model problems presented here were utili-
tized!. An equivalent computation using Monte Carlo~MC!
methods@3# is reported to take 25–100 h.

Before concluding, a few remarks will be made about the
similarities and differences between the TM method and ex-
isting techniques. While Boltzmann transport techniques are
typically efficient, the implentation of these methods~e.g.,
Ref. @4#! in three dimensions would lead to unacceptable
numerical diffusion during the process in which the ions’
trajectories are integrated in space. The TM method over-
comes this problem because it allows the ions to proceed
from one nuclear scatter to the next directly. In this way, the
TM method is more similar to MC methods. The key advan-
tage to the TM method over the MC method is that instead of
following discrete particles, the TM follows, in essence, a

FIG. 7. Arsenic-ion concentration for a 355-keV injected beam
into amorphous silicon as a function ofz: squares, experiment; line,
TM.

FIG. 8. Boron-ion concentration for an 85-keV injected beam into^111& silicon. ~a! Boron-ion concentration as a function ofz: squares,
experiment; dashed line, amorphous TM calculation; solid line, channeling TM calculation.~b!–~d! Contour plots of the boron-ion concen-
tration as a function of two spatial variables with the third being integrated~summed! over. Contours are 0.003 16, 0.01, 0.0316, 0.1, 0.316,
and 0.95 of the maximum value.
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density of ions. Therefore all possible trajectories~weighted
by their corresponding probabilities! are incorporated into
the TM, thereby eliminating statistical fluctuations.

In summary, we have presented a method of modeling ion
implantation based on long-mean-free-path particle kinetics,
which is highly efficient, accurate, and uses compact matri-
ces to store the ‘‘propagator’’ needed for the calculation.
Since the method only requires storage of scattering rates
and the relatively simple angular distributions of scattered
particles in each cell, rather than the full distribution func-

tion, one can use it to run a very large and detailed simula-
tion on a relatively small computer. However, it is possible
to derive the same information from this approach as one
would with a full blown solution of the Boltzmann equation.
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